

Essential Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets, preprocessing, model_selection, metrics
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import (RandomForestClassifier, GradientBoostingClassifier,
 BaggingClassifier, AdaBoostClassifier, GradientBoostingRegressor)
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import (classification_report, confusion_matrix, accuracy_score,
 mean_absolute_error, mean_squared_error, r2_score, silhouette_score)

1. DATA EXPLORATION & PREPROCESSING
def preprocess_data(df, target_column=None):
 """Complete data preprocessing pipeline"""
 # Handle missing values
 df_clean = handle_missing_values(df, 'mean')

 # Separate features and target
 if target_column:
 X = df_clean.drop(target_column, axis=1)
 y = df_clean[target_column]
 else:
 X = df_clean
 y = None

 # Scale numerical features
 scaler = StandardScaler()
 numerical_cols = X.select_dtypes(include=[np.number]).columns
 X[numerical_cols] = scaler.fit_transform(X[numerical_cols])

 return X, y, scaler

2. SUPERVISED LEARNING - REGRESSION
def linear_regression_example(X, y):
 """Linear Regression Implementation"""
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

 # Split data
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

 # Create and train model
 model = LinearRegression()
 model.fit(X_train, y_train)

 # Predictions
 y_pred = model.predict(X_test)

 # Evaluation
 mae = mean_absolute_error(y_test, y_pred)
 mse = mean_squared_error(y_test, y_pred)
 rmse = np.sqrt(mse)
 r2 = r2_score(y_test, y_pred)

 print("📈 Linear Regression Results:")
 print(f"MAE: {mae:.4f}, MSE: {mse:.4f}, RMSE: {rmse:.4f}, R²: {r2:.4f}")

 return model, y_pred

def random_forest_regression(X, y):
 """Random Forest for Regression"""
 from sklearn.ensemble import RandomForestRegressor

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

 model = RandomForestRegressor(n_estimators=100, random_state=42)
 model.fit(X_train, y_train)

 y_pred = model.predict(X_test)

 # Feature importance

 feature_importance = pd.DataFrame({
 'feature': X.columns,
 'importance': model.feature_importances_
 }).sort_values('importance', ascending=False)

 print("🌲 Random Forest Feature Importance:")
 print(feature_importance.head())

 return model, y_pred, feature_importance

3. SUPERVISED LEARNING - CLASSIFICATION

def logistic_regression_example(X, y):
 """Logistic Regression Classification"""
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

 model = LogisticRegression(random_state=42)
 model.fit(X_train, y_train)

 y_pred = model.predict(X_test)
 y_pred_proba = model.predict_proba(X_test)

 print("📊 Logistic Regression Results:")
 print(classification_report(y_test, y_pred))
 print("Confusion Matrix:")
 print(confusion_matrix(y_test, y_pred))

 return model, y_pred, y_pred_proba

def random_forest_classification(X, y):
 """Random Forest for Classification"""
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

 model = RandomForestClassifier(n_estimators=100, random_state=42)
 model.fit(X_train, y_train)

 y_pred = model.predict(X_test)

 print("🌲 Random Forest Classification Results:")
 print(classification_report(y_test, y_pred))

 return model, y_pred

def svm_classification(X, y):
 """Support Vector Machine Classification"""
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

 model = SVC(kernel='rbf', probability=True, random_state=42)
 model.fit(X_train, y_train)

 y_pred = model.predict(X_test)

 print("🎯 SVM Classification Results:")
 print(classification_report(y_test, y_pred))

 return model, y_pred

4. UNSUPERVISED LEARNING - CLUSTERING

def kmeans_clustering(X, n_clusters=3):
 """K-Means Clustering Implementation"""
 model = KMeans(n_clusters=n_clusters, random_state=42)
 labels = model.fit_predict(X)

 # Calculate silhouette score
 silhouette_avg = silhouette_score(X, labels)
 print(f"🎯 K-Means Clustering (k={n_clusters})")
 print(f"Silhouette Score: {silhouette_avg:.4f}")

 return model, labels

def find_optimal_k(X, max_k=10):
 """Find optimal number of clusters using elbow method"""
 distortions = []
 K = range(1, max_k + 1)

 for k in K:
 kmeans = KMeans(n_clusters=k, random_state=42)
 kmeans.fit(X)
 distortions.append(kmeans.inertia_)

 # Plot elbow curve
 plt.figure(figsize=(10, 6))
 plt.plot(K, distortions, 'bx-')
 plt.xlabel('Number of Clusters (k)')
 plt.ylabel('Distortion')
 plt.title('Elbow Method for Optimal k')
 plt.show()

 return distortions

5. DIMENSIONALITY REDUCTION
def pca_analysis(X, n_components=None, variance_threshold=0.95):
 """Principal Component Analysis"""
 if n_components is None:
 pca = PCA(n_components=variance_threshold)
 else:
 pca = PCA(n_components=n_components)

 X_pca = pca.fit_transform(X)

 print("🔍 PCA Analysis Results:")
 print(f"Original Shape: {X.shape}")
 print(f"PCA Shape: {X_pca.shape}")
 print(f"Explained Variance Ratio: {pca.explained_variance_ratio_}")
 print(f"Total Variance Explained: {pca.explained_variance_ratio_.sum():.4f}")

 # Plot explained variance
 plt.figure(figsize=(10, 6))
 plt.plot(range(1, len(pca.explained_variance_ratio_) + 1),
 np.cumsum(pca.explained_variance_ratio_))
 plt.xlabel('Number of Components')
 plt.ylabel('Cumulative Explained Variance')
 plt.title('PCA Explained Variance')
 plt.grid(True)
 plt.show()

 return pca, X_pca

6. MODEL EVALUATION & HYPERPARAMETER TUNING
def evaluate_classification_model(model, X_test, y_test):
 """Comprehensive classification model evaluation"""
 y_pred = model.predict(X_test)
 y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None

 print("📊 Model Evaluation Metrics:")
 print("="*50)
 print(classification_report(y_test, y_pred))
 print("\nConfusion Matrix:")
 print(confusion_matrix(y_test, y_pred))
 print(f"\nAccuracy Score: {accuracy_score(y_test, y_pred):.4f}")

 return y_pred, y_pred_proba

def hyperparameter_tuning(model, param_grid, X, y, cv=5):
 """Hyperparameter tuning using GridSearchCV"""
 grid_search = GridSearchCV(
 estimator=model,
 param_grid=param_grid,
 cv=cv,
 scoring='accuracy',
 n_jobs=-1,
 verbose=1
)

 grid_search.fit(X, y)

 print("🎯 Hyperparameter Tuning Results:")
 print(f"Best Parameters: {grid_search.best_params_}")
 print(f"Best Cross-Validation Score: {grid_search.best_score_:.4f}")

 return grid_search

7. COMPREHENSIVE ML PIPELINE
def complete_ml_pipeline(df, target_column, problem_type='classification'):
 """
 Complete ML pipeline from data loading to model evaluation

 Parameters:
 - df: pandas DataFrame
 - target_column: name of target variable
 - problem_type: 'classification' or 'regression'

 """
 print("🚀 STARTING COMPLETE ML PIPELINE")
 print("="*60)

 # Step 1: Data Exploration
 print("1. 📊 DATA EXPLORATION")
 explore_data(df)

 # Step 2: Preprocessing
 print("\n2. 🔄 DATA PREPROCESSING")
 X, y, scaler = preprocess_data(df, target_column)

 # Step 3: Model Training based on problem type
 print(f"\n3. 🤖 MODEL TRAINING ({problem_type.upper()})")

 if problem_type == 'classification':
 models = {
 'Logistic Regression': LogisticRegression(random_state=42),
 'Random Forest': RandomForestClassifier(random_state=42),
 'SVM': SVC(random_state=42, probability=True)
 }
 else: # regression
 models = {
 'Linear Regression': LinearRegression(),
 'Random Forest': RandomForestRegressor(random_state=42)
 }

 # Train and evaluate each model
 results = {}
 for name, model in models.items():
 print(f"\n--- {name} ---")
 if problem_type == 'classification':
 X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.3, random_state=42, stratify=y)
 else:
 X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.3, random_state=42)

 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

 if problem_type == 'classification':
 accuracy = accuracy_score(y_test, y_pred)
 results[name] = accuracy
 print(f"Accuracy: {accuracy:.4f}")
 else:
 r2 = r2_score(y_test, y_pred)
 results[name] = r2
 print(f"R² Score: {r2:.4f}")

 # Find best model
 best_model_name = max(results, key=results.get)
 print(f"\n🏆 BEST MODEL: {best_model_name} (Score: {results[best_model_name]:.4f})")

 return results, models[best_model_name]

8. QUICK START EXAMPLES
def quick_classification_example():
 """Quick classification example with iris dataset"""
 from sklearn.datasets import load_iris

 # Load data
 iris = load_iris()
 X, y = iris.data, iris.target
 feature_names = iris.feature_names

 print("🌸 Iris Dataset Classification Example")
 print("Features:", feature_names)
 print("Target classes:", np.unique(y))

 # Preprocessing
 scaler = StandardScaler()
 X_scaled = scaler.fit_transform(X)

 # Train model
 X_train, X_test, y_train, y_test = train_test_split(
 X_scaled, y, test_size=0.3, random_state=42, stratify=y)

 model = RandomForestClassifier(n_estimators=100, random_state=42)
 model.fit(X_train, y_train)

 # Evaluate
 y_pred = model.predict(X_test)
 accuracy = accuracy_score(y_test, y_pred)

 print(f"Model Accuracy: {accuracy:.4f}")
 print("\nClassification Report:")
 print(classification_report(y_test, y_pred, target_names=iris.target_names))

 return model, accuracy

def quick_regression_example():
 """Quick regression example with diabetes dataset"""
 from sklearn.datasets import load_diabetes

 # Load data
 diabetes = load_diabetes()
 X, y = diabetes.data, diabetes.target

 print("💊 Diabetes Dataset Regression Example")
 print(f"Dataset shape: {X.shape}")

 # Train model
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

 model = RandomForestRegressor(n_estimators=100, random_state=42)
 model.fit(X_train, y_train)

 # Evaluate
 y_pred = model.predict(X_test)
 r2 = r2_score(y_test, y_pred)
 rmse = np.sqrt(mean_squared_error(y_test, y_pred))

 print(f"R² Score: {r2:.4f}")
 print(f"RMSE: {rmse:.4f}")

 return model, r2, rmse

9. VISUALIZATION TOOLS
def plot_feature_importance(model, feature_names, top_n=10):
 """Plot feature importance for tree-based models"""
 if hasattr(model, 'feature_importances_'):
 importance = model.feature_importances_
 indices = np.argsort(importance)[::-1]

 plt.figure(figsize=(10, 6))
 plt.title("Feature Importance")
 plt.bar(range(min(top_n, len(importance))),
 importance[indices][:top_n])
 plt.xticks(range(min(top_n, len(importance))),
 [feature_names[i] for i in indices[:top_n]], rotation=45)
 plt.tight_layout()
 plt.show()
 else:
 print("Model doesn't have feature_importances_ attribute")

def plot_confusion_matrix_heatmap(y_true, y_pred, class_names=None):
 """Plot confusion matrix as heatmap"""
 cm = confusion_matrix(y_true, y_pred)

 plt.figure(figsize=(8, 6))
 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
 xticklabels=class_names, yticklabels=class_names)
 plt.title('Confusion Matrix')
 plt.ylabel('True Label')
 plt.xlabel('Predicted Label')
 plt.show()

